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COMMENT 

Directed travelling salesman problem 

B K Chakrabartit 
Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Strasse 77, 5000 Koln 41, 
West Germany 

Received 14 August 1985 

Abstract. We consider here an exactly soluble directed travelling salesman problem, where 
the salesman is forbidden to move, during its visit to the cities, opposite to a particular 
direction. When the cities are randomly distributed, with concentration p, on the sites of 
a square lattice of linear size L, the optimised total contour length becomes ( l / p ) +  
[ 2 ( 2 ~ - 1 ) / ~ ~ 1  (1/L) per city ( p > o ) .  

Optimisation problems arise naturally in various contexts ranging from designs of 
integrated or printed circuits (where one optimises the total connecting length between 
the various circuit components) to statistical physics (see, e.g., Kirkpatrick 1984, Siarry 
and Dreyfus 1984, Kirkpatrick and Toulouse 1985). In fact, simulated annealing 
with a Metropolis type algorithm for many-body systems at finite temperature (annealed 
down to zero temperature) has been very effectively utilised to find numerically and 
quantitatively the near-global optimised configurations in computer aided designs 
(Kirkpatrick 1984, Siarry and Dreyfus 1984). Quantitative analysis of the simulated 
annealing algorithm requires, of course, problems simpler than the physical design of 
computers, and, in this context, the travelling salesman problem has received the most 
attention (Kirkpatrick et a1 1983, Kirkpatrick 1984, Kirkpatrick and Toulouse 1985). 
However, except for the exact enumeration solution for the optimised path in small 
systems (Crowder and Padberg 1980) and the exact solution of a thermodynamic model 
which involves travelling salesman type optimisation (Vannimenus and MCzard 1985), 
all the available solutions to the problem are, so far, numerically obtained using Monte 
Carlo type simulations or simulated annealing (Kirkpatrick 1984, Kirkpatrick and 
Toulouse 1985). 

We consider here a directed version of the travelling salesman problem, which is 
very simple and is exactly soluble. In fact, all the lattice statistical problems become 
simple, or at least easier to study, when a directedness is introduced; see e.g., Kinzel 
and Yeomans (1981) for directed percolation, Dhar (1982) for the directed animal 
problem and Chakrabarti and Manna (1983) and Redner and Majid (1983) for directed 
self-avoiding walk statistics. 

Let us assume that the cities (occupied sites) are distributed randomly, with 
concentration p ,  on a square lattice of linear size L. In the directed travelling salesman 
problem, the salesman is forbidden to move opposite to one fixed lattice direction 
(say, the upward direction in figure 1) during its visit to the cities. The salesman then 
visits each city of a given (horizontal) layer and goes to the extreme end city (occupied 
site) in that layer or of the next layer, and then moves down to the next Iayer. None 
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Figure 1. A typical finite section ( l o x  10) of the square lattice containing 21 sites (cities), 
shown by full circles, distributed randomly with a concentration p = 0.21. The salesman 
never moves opposite to the fixed lattice direction shown. The thick line shows the directed 
travelling salesman's path. For notation, see the text. 

of the lattice bonds are traced twice and the travel is restricted along the lattice bonds 
(streets) only (see figure 1). After visiting all the cities, down to the last layer, the 
salesman comes back straight to the origin. The solubility of this problem comes from 
the non-degeneracy of the 'Manhattan type' path traced by the directed salesman, 
compared to those of an undirected travelling salesman, where, similar to the spin 
glass problem, the degeneracy of the ground state makes the problem of finding globally 
optimised configurations difficult. 

The total contour length for the directed travelling salesman is then given by (see 
figure 1) 

L 
s = ~ p '  1 qm(m+1)(L-m)+2L,  

/ = 0  

where q = (1 - p ) .  This is so because, if in a layer the two extreme occupied sites are 
separated by a distance 2, then m = L -  1 sites are vacant (each with probability q )  in 
that layer, on either side (two sides together) of the occupied sites, and they can be 
arranged in (m + 1) ways. The extra 2L term comes from the downward travel after 
the visit of each layer and the final upward travel (direct) to the first layer. (For return 
to the origin, there would be a small correction term which would disappear in the 
large p and L limit.) 

For q < 1 ( p  > 0), one then immediately obtains 
s = L*[ q (  1 - qL+')  + p ( l  - qL+l)  - ( L +  1)pqL+'1 

+L[2-2q(l -qL")-(2/p)q2(1 + + I )  

+ ( L +  2 ) (  L + l)pqL+' + 2 ( L +  l)qL+2], 

s = L2+ [2(2p - l)/p]L. 

( 2 )  

(3)  

which, in the large L limit ( p  > O ) ,  becomes 

This is correct for any p >  0 (more specifically for (1 - P ) ~ +  0) and gives, in the p = 1 
limit, the contour length of magnitude S = L2+ 2L, which is exact for the undirected 
problem also. 
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A mean field type argument for the ordinary travelling salesman problem would 
indicate that the average travel distance s between two cities, on a two-dimensional 
lattice, would be of the order of ( L2/pL2) ' /2  - 1 / (  p ) ' / ' ,  while in the directed travelling 
salesman problem s = S / p L 2  is equal to ( l / p )  + [ 2 ( 2 p  - l ) / p 2 ] (  1 /  L ) .  Thus the directed 
optimisation contributes an extra factor (0( l / ~ ' ' ~ ) )  in the leading-order term in the 
average optimised length (which becomes prominent as p + 0; the limit L +  CO, p -+ 0, 
L 2 p  = constant, corresponds to the continuum limit) with a ( 1 /  L )  order correction term. 
It may be noted that, at p = i, the ( 1 /  L) order correction term vanishes because the 
negative gain of order L over the L2 order term in the total optimised travel length in 
(3) cancels exactly the vertical downward and upward travel length. 
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Note  added in proof: The path length S - 2L, discdssed here, is the sum of the distances between two extreme 
end occupied cities in each layer. The salesman has to move an extra length, coming from the mismatch 
of the extreme end cities in two successive layers. Taking this correction 2 L q / ( l -  4') into account, the 
total path length S i n  (3) becomes S = L 2 + 2 [ 1 - q 2 / ( 1 - q 2 ) ] L ,  giving s = l / p + [ 2 ( 1 - 2 q 2 ) / ( 1 - q 2 ) p ] ( l / L ) .  
This correction and some other exact solutions of the undirected problem, e.g. on the Bethe lattice, will be 
discussed elsewhere (Barma et al 1986 to be published). 
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